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We study the problem of existence of pointwise-Lipschitz-continuous selections
for the metric projection. We first approximate by finite dimensional subspaces of
C(X) where X is a certain compact Hausdorff space and give a sufficient condition
for existence of such selections. We apply this result to the case when X is the
union of finitely many compact real intervals and get in this case a partial converse
to a recent result of Brown.

INTRODUCTION

Let X be a compact Hausdorff space and C(X) the space of all real-valued
continuous functions f on X wunder the uniform norm |f|:=
sup{| f(x)}: x € X}. If G is a subspace of C(X), then for all f€ C(X) the set
Py(f):={8,E€ G: | f— gl = inf{|| f— g|I: g € G}} is the set of best uniform
approximations to f from G. This defines a set-valued mapping P, which is
called the metric projection onto G. A mapping s: C(X)— G is called a
selection for Pg if s(f) € Pg(f) for all f€ C(X). Furthermore, a selection s
for P is called pointwise-Lipschitz-continuous if, for each f& C(X), there
exists a constant K,> 0 such that, for each fecx), |Is(¢f)—s(H) <
K| f— F (this clearly implies that s is continuous). A selection s is called
quasilinear if, for each f€ C(X), for each g € G and for all constants c, d,
the relation s(¢f+ dg) = cs(f) + dg holds.

In this paper we study the problem of existence of continuous and
pointwise-Lipschitz-continuous, quasilinear selections for metric projections.
This problem has been considered by a number of authors in the last years.
Lazar et al. [8] have been the first to study this problem. They have charac-
terized those one-dimensional subspaces G of C(X) which admit continuous
selections for P;. By using the theory of weak Chebyshev spaces,
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Niirnberger and Sommer (see |11, 13, 14, 16-19|) have completely charac-
terized those finite dimensional subspaces G of C|a, b], where [a, b] is a
compact real interval, which admit continuous selections for P;. Recently,
Blatt et al. [1]| have shown that each continuous selection constructed by
Niirnberger and Sommer is even pointwise-Lipschitz-continuous which is a
strong property of the metric projection and also quasilinear. For locally
compact subspaces X of the real line Niirnberger [12] has been able to show
the existence of continuous selections for P, in case G is an element of a
class of finite dimensional weak Chebyshev subspaces of C(X) and Deutsch
and Kenderov [5] have studied this problem in the case when X is a normed
linear space.

Recently, Brown [4] has been concerned with finite dimensional subspaces
G of C(X) with the property that no non-zero function in G vanishes on all
points of some non-empty open subset of X. Such spaces are called Z-spaces.
The preceding property implies that if G is a Z-space with dimension at least
two, then X can have no isolated points. Brown has given a description of
those X for which there is a Z-subspace G admitting a continuous selection
for P;. For example, one of his main results which is an extension of
Mairhuber’s theorem is the following: Suppose that there exists a Z-subspace
G of C(X) with dimension at least two such that there is a continuous
selection for Pg. If X is metrisable, then X is homeomorphic to a subspace of
a circle.

Using the arguments established by Brown it is easily verified that the
existence of a continuous selection for P;, where G is an n-dimensional
subspace of C(X), implies that each non-zero g € G has at most » distinct
zeros on X and at most n — 1 zeros with a sign change in X (Lemma 1.1). In
this paper we study the problem of conversing this statement. We are
therefore concerned with those n-dimensional subspaces G of C(X) whose
non-zero elements have only finitely many zeros. In [20] we have shown
that, under appropriate hypothesis on X, there is a class of these spaces such
that for each G contained in this class each f€ C(X) has a particular best
approximation g, € P;(f) which is called alternation element
(Definition 1.4, Theorem 1.5). In that paper we furthermore have given a
sufficient condition for uniqueness of alternation elements (Theorem 1.5).
This result immediately applies to our studies because the property that each
S€E€ C(X) has a unique alternation element g,€ P,(f) implies the existence
of a quasilinear, pointwise-Lipschitz-continuous selection s defined by
s(f):= g, (Theorem 1.7).

In Section 2 we apply our results established in Section 1 to the case when
X =U)j_, 1;, the union of finitely many compact real intervals. We show the
following result which gives for this particular X a partial converse to the
results of Brown: Let G be an n-dimensional subspace of C(X). If each g€ G
has at most n — 1 zeros with sign changes and if there is a z € X such that G
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satisfies the Haar condition on X\{z}, then there exists a pointwise-Lipschitz-
continuous, quasilinear selection for P; (Theorem 2.1). This theorem yields
the first result on existence of spaces G with dimension at least two
admitting continuous and even pointwise-Lipschitz-continuous selections for
P although G is not Chebyshev and also not weak Chebyshev (Example 2).
Therefore this situation is quite different from the case X = [a, b}, because
there the weak Chebyshev property is necessary for existence of continuous
selections (see Niirnberger [11]). Our results and also, for one-dimensional
spaces, the results of Lazar et al. [8] show that the number of the zeros with
a sign change of the functions in G plays the fundamental role for existence
or nonexistence of continuous selections, however, not the number of the sign
changes while for X = [a, b| the continuity of the functions in G does not
allow a difference between sign changes and zeros with a sign change.

Using the arguments established in this paper it is easily verified that all
results given here are also true if X will be replaced by a corresponding
locally compact Hausdorff space T and C(X) by Cy(7), the space of all real-
valued continuous functions f on T vanishing at infinity, i.e., for each ¢ > 0
the set {x € T: | f(x)| > ¢} is compact.

1. A SuUFFICIENT CONDITION FOR THE EXISTENCE OF
PoOINTWISE-LIPSCHITZ-CONTINUOUS SELECTIONS

In the following X will be any compact Hausdorff space and X a compact
Hausdorff space satisfying the following property: For each sequence
{x} c X converging to x € X and each neighborhood U of x there is an
integer k, such that for all points x,, x; € U, k > k,, k> k,, there is a path
P from x, to x; completely contained in U.

Furthermore, in the following G will always denote an n-dimensional
subspace of C(X) and of C(X), resp. with > 2 and X resp. X will contain at
least one non-isolated point. For brevity we will give some notations and
definitions only for the more general space X but we always will assume that
the same has been done for the space X.

Recently, Brown {4] has given a description of those X for which there is
a Z-subspace G with dimension at least two admitting a continuous selection
for P;. Following his arguments in the proofs of Lemma 3 and Lemma 6 the
following statement is easily verified.

LeEMMA 1.1. If G is a Z-subspace of C(X) with dimension n such that G
admits a continuous selection for P, then each non-zero g € G has at most n
distinct zeros on X and at most n — 1 zeros with a sign change in X.
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We say that a function f€ C(X) has a zero x with a sign change in X if
for each neighborhood U of x there are two points y,,y, € U such that
SOS,) <O.

If X=|a, b], a real compact interval, then the converse to Lemma 1.1
follows directly from the results of Niirnberger and Sommer [13]. Therefore
we conjecture that the converse also holds in our general situation.

In the following we will study this problem. We first introduce an
important class of n-dimensional subspaces of C(X).

DEFINITION 1.2. We say that G satisfies the Haar condition on a subset
Y of X if each non-zero g € G has at most n — 1 zeros on Y. G is said to be
Chebyshev if Py(f) is a singleton for each f€ C(X).

The proof of the following classical result can be found in the book of
Meinardus [9].

THEOREM 1.3. The following statements are equivalent:

(i) G is Chebyshev.
(ii) G satisfies the Haar condition on X.

gl(xl) gl(xn)
(i) det(g;(x))}, 1= ;| #0

gn(xl) gn(xn)
Jor each basis g, ..., g, of G and all n distinct points x, ..., x, € X.

For brevity we set Dg(x,,..,x,):=det(g;,(x)));,., for all points
Xp s X, € X, where g,...., g, i5 a fixed chosen basis of G.
Henceforth we will suppose that G satisfies the following conditions:

(1.1) There is a minimal finite subset Z = {z,,..., z,,} of non-isolated
points of X such that G satisfies the Haar condition on X\Z.

(1.2) For any n distinct points x, ,..., x,, € X there are pairwise disjoint
neighborhoods U, of x,,i= l,...,n, such that eDg(y,,...»,) 20, e=+1 for
all y, e U, i=1,..,n.

Then these both conditions imply that for any n distinct points
Xy e X, € X the inequality eDg(y,,..., ¥,) > 0, € = 11, holds for all those n-
tuples (¥, se0s ¥,) € [ I7- U, for which {y, ..., y,} N Z = @. This will play an
important role for the existence of particular best approximations.

The preceding arguments allow the following notation: Let any n + 1
distinct points x,,..,x, € X be given. Then for each subset {xg,.,Xx;_;,
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Xy 4 g Xy} Of {Xq,.., x,} there are neighborhoods U; of x;, j=0,...,n, j#i
such that eDg(Vysees Vi_1s Vig100Va) > 0, €= 11, for all those n-tuples

n
(yo,---, yi_.l,y1+1""ayn) € n l].l

j=0
J#i

for which {ygs.., ¥i_1s Vip 1o Vul N Z =@, We set:

A (Xgsrnns X):= SN D(Vgseus Vi_ s Vi 130ees Y

Using this notation we define certain best approximations as follows.

DEFINITION 1.4, If f€ C(X), then g, € P,(f) is said to be an alternation
element (AE) of f, if there exist n 4+ 1 distinct points x,,..., x, € X such that

6(_1)lAl(xo yoeny xn)(f_ go)(xl) = ”f_ go”’ i=0,.,ne==l
The points x,.,..., x, are called oriented extreme points (OE-points) of f— g,.

In [20] we have shown the following results on existence and uniqueness
of AEs which are the key results for existence of pointwise-Lipschitz-
continuous selections.

THEOREM 1.5. Let G be an n-dimensional subspace of C(X) and of C(X),
respectively such that G satisfies conditions (1.1) and (1.2). Then the
JSollowing statements hold:

(i) Each f€ C(X) has at least one AE g, € Pg(f).
(ii) If Z is a singleton, then G < C(X) implies thqt each f € C(X) has
at most one AE and G  C(X) implies that each f € C(X) has a unique AE.

(iii) If each f€ C(X) has a unique AE, then each non-zero g € G has
at most n distinct zeros.

We will now show that uniqueness of an AE always implies the existence
of a pointwise-Lipschitz-continuous selection. To prove this we first give the
following lemma:

LEMMA 1.6. Let each g € G have at most n distinct zeros and let n + 1
distinct points t,,...,t, € X be given. If Z N {ty,...,t,} + &, then there is an
integer i € {0,...,n} such that t,€ Z and Dg(ty,.s t;_1s tiy peees £y) 0.

Proof. Let n+1 distinct points ¢g,..,t,€X be given such that
{tgos L,y N Z # . Then without loss of generality we may assume that
ZN {tgsens by} = {tgsr ty}- Now suppose that for each i=0,.,m,
Dg(tosis ty_ 13t 1 t,)=0. This implies the existence of non-zero
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functions g; € G,i=0,...,m, satisfying g;,(t;)=0 for j=0,..,n,j# i Since
each non-zero g € G has at most n distinct zeros, it follows that g,(¢;) # O.
Therefore the functions g,,..., g,, are linearly independent on X. Furthermore
it follows from ¢, st NZ =@ and condition (1.1) that for each
i=m+ 1,.,n there is a linearly independent function g, € G satisfying
g(t)=1 and g/(t;)=0 for j=m+ l,..,n,j+#i. Summarizing all these
arguments we have got n+ | linearly independent functions in G which
contradicts the hypothesis that dim G =n.
We are now in a position to prove the main result of this section.

THEOREM 1.7. If for each f € C(X) there exists a unique AE g€ Ps(f),
then the map s:C(X)— G defined by s(f):= g, is a quasilinear, pointwise-
Lipschitz-continuous selection for P.

Proof: We first show that s is continuous at f. Suppose that s is not
continuous at f. Then there exist functions f€ C(X), g, € P,(f) and a
sequence {f,} = C(X) such that f, - f; s(f,) — g, but g, # s(f) = g We will
show that g, is also an AE of f and this will contradict the uniqueness of g,.

Since, for each k, s(f,) is an AE of f,, for each k there exist n + 1 OE-
points foy.,..., £, such that

Ex(—1) A (tog rees L) S — S
= || fi — s(flls =0, n6,=+l

Without loss of generality we may assume that ¢, = ¢ and ¢, — t; € X. Then
following the proof of Theorem 1.5 in [20] we can show that all points ¢; are
distinct and A(fogseees Lpi) = Ai(Lo s £,) for k— 0 (in [20] we only have
been able to prove this for the case that G is an n-dimensional subspace of
C(X). Therefore we have chosen here the same hypothesis on G. All
following arguments in this proof are even true if we replace X by X).

Therefore g, must be an AE of f and thus we have shown that s is
continuous at f.

Using the proof of Corollary 1.3 in [12] it is easily verified that s is
quasilinear.

We now prove that s is even pointwise-Lipschitz-continuous. Suppose tha;lt
s is not pointwise-Lipschitz-continuous. Then there exist a function f€ C(X)
and a sequence {f,} — C(X) such that for each k

() = s > kLS =111 (*)

We may assume that f, — f, since otherwise there exist a subsequence of {/,}



METRIC PROJECTION ON Z-SPACES 121

which we again denote by {f,} and a constant K, > 0 such that for each
k, | f—fll > K,. This implies that for each k

() = s(Ill < Wi = s +ILf =D + 1L = Al
SIS = s+ IS = s+ =Ll

2(lf = s+ 1S =Sl

20171+ 1=

<2 (i a)ir-s

which is a contradiction to inequality (*).
Since for each k, s(f,) is an AE of f;, for each k there exist n + 1 OE-
points £.,..., #,, € X such that
L Y

gk(_l)idi(tok s Lt ) (i — LA 1i)
= || fi — S()h i=0,.,m¢8==+1

We may assume that, for each k, ¢, = &. Since s is continuous at fand f, - f,
we furthermore may assume that there are n 4 1 distinct points ¢,,..., £, EX
such that ¢, — ¢; and

e(=1)4ltg s )= SN =S =Nk i=0ssm.

We will now show the existence of a constant C >0 such that
Is(f) —s(fll € C|| f—fi|| which will contradict inequality (*). To do this
we will study the behavior of the functions s(f) — s(f,) on a certain subset
U; of X. For defining this set we first select a point [ € {ty,.., t,} as follows:

If ZM{ty,....t,} =&, then condition (1.1) implies that for j=0,., n,
D(tgseens ;1 tjy19s 1,) # 0. If there is a non-isolated point ¢, € {¢y,..., t,},
then we set £;:=¢;. If not, then we choose an arbitrary point z € Z, which is
non-isolated by definition of Z, and set 7, := z.

If {tgsst,} MZ#0, then using Theorem 1.5(iii) and Lemma 1.6 we
obtain a point t; € Z M {ty,..., 1} such that Dg(tyss t;_ 15 81 s 1,) # 0. We
set f; == 1;. B

This point £; leads to a subset U, of X as follows: We first define n + 1
points f,,..., f, by fj:=t; for i=0,..,n,i#j and #;:={,. Then for i=0,..,n
condition (1.2) of G implies the existence of closed neighborhoods
Uys1=0,,n, 0 #i of f; such that 6, Dg(Fyses [;_ s iy 1o By) > 0,0, = 1,
for all n-tuples

<
<

n
(Forenr Fi_1o Fry 1 ) € ] Uy
=0
I#i
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for which

{Boses Fi_ s Eip 1o TV N Z =@

We set

=

-~

U,:= U,.

¥

Each U, is a closed neighborhood of f,. This implies the existence of an
integer k, such that ¢, € U, for I=0,...,,n,I+j, and all k > k,. Therefore it
follows that

Afborsees Gt s Xs Ly g gormees b)) = Ailgseees L 13 Xy b yeins Ey)

for all x € U; and all k > k.

If #,# ¢, then following the construction of f, we see that ¢,...,t, are
isolated points. In this case there must even be an integer k, > k, such that
ty =1t fori=0,.., nand all k> k,. For estimating the functions s(f) — s(f})
we need a special basis of G. It follows from Dg(tyss t;_ 15 £y s 2,) # 0
that for i =0,..., n, i #j there are functions g, € G defined by

8i(x) =€ D(tgserns ti s X by poeees By Ly gyeees Ey)

satisfying g,(¢;) #0, where c¢;:1=A(fysens ;1 Ly Ly ysones 8}/ A (g sees 1y
£istiy »es ty). Then it is easily verified that go....g,_,, 8, 1. &, form a
basis of G (the constants c; are only essential in the case when [; # ¢;, i.e., in
the case when all points ¢,,..., ¢, are isolated). Therefore each g € G can be
‘written as

1=

g= g(t,) g;.

P

+ It
-~ o

In particular, for each & we have

n

=1V () —s(f)x) = Y e(=1Y*1(s(f) — s(f)e:) - 8i(x)

I=0
i#j
= 3 (1P () — SUD) - 50 g(x) - | 20
ind
= 3 (1Y) — SO - ei(—1) !
i=0
izf

X sgn DG(IO ses g bip e G0 % tj+1w-; tn) | gl(x)l
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= Y (=1 —s(f ) ¢
=0
#
s

X sgn DG(tO""’ t,_l, t,'+ L 9eees tj_l’ X, tj+1""1 tn) | gl(x)l

-

We furthermore need the inequality

&(— 1) 4ty s £,)(S() — (L)
= &(=1)' Aty s 1)) =S +fi— s(f) +f = f)ts)
<= =sON + ILfe = s + 1S =Ll
<= If=sON+1Lfe = s+ L/ =Sl
<=M =sON+ 1A=+ 1= s+ =Sl
=2[lf =Ll

Analogously we can show that for each %,

e(—1) "4 (tog e La)(SU) — SUON(t) < 211 F— il

Summarizing all preceding arguments, for all k and all x € U; we obtain the
relation

e(—=1Y*'(s(f) = s(f))(x)
= S 8(_1)l(s(f) —s(f)t) ¢

i=0

i+J

X Sgn DG(tos---’ t[_[s t[+ 190" tj-]’ x’ tj+l""9 tn) | gl(x)l
= 3 e(=1)!s(f) — s(ft) e

iel

X sgn Dg(tos---s Li s bigpeen t,—19 X, tj+1""’ [n) l gl(x)|

(where I'= {i € {0,..., n}, i #j:

S8 D (Fyserns by ya Ly yomn 51 X By 1yeney 1) 7 OF)
= z 5("1)i(s(f) — s(fi)t) 4(to e t) g:ix)]

iers
<Y 2/ —Aill 8]

L2 f=Ad IZO I &l =M, ||f—fills

i#j
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where

M;:=2 3 |gl
i=0
izf

Now choosing for each k the same integer j as for ¢,,..., f, we can easily
show that for each x € U; and each k > k, the inequality

e(=1Y* ' (5(f) = s(fNx) = =2l f=fill 2 Nl gull = =M || £~ Sl
i=0
‘i;ej
holds, where
n
M,:=2 sup 2 | gl
k>ky =9
ixj
and for i =0,...,n, i #, g, is defined by
ir(X) :=Cik D (Tosomens bt s Xs Lig t oreees L 1o Lt oreess Bk

with

 Altogrees 51k o by 1 omees Ek)

Ciwi= .
R Vi (FYURy FERTPRY /2 TRy )

Since g, — g; for k— oo, it follows the existence of a positive constant
M > max{M,, M,} such that for all k> k,

Is() = sUlly, <MIS—Fil

By construction the point f; is non-isolated. This guarantees that the
neighborhood U; of #; contains infinitely many elements. Then, since by
Theorem 1.5(iii) each non-zero g€ G has at most n distinct zeros,
compactness arguments imply that there is a positive constant L satisfying
miny _, || glly,= L. Setting g := (s(f) — s(fi)lls(f) —s(f)l we obtain the

inequality

IsG7) ~ SO < 75 = sl < 7 1=l

for all k > k, which contradicts inequality (*).
This shows that s is pointwise-Lipschitz-continuous and completes the
proof.
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2. APPLICATIONS AND EXAMPLES

This section is concerned with linear subspaces G of C(X), where X is
chosen as

!
x=01,
i=1

the union of finitely many non-degenerate real compact intervals.

In the following let G again denote an n-dimensional subspace of C(X),
n > 2. Using the results proved in Section 1 we will give a partial converse to
Lemma 1.1 by showing that for all elements of a class of n-dimensional Z-
subspaces of C(X) uniqueness of the AEs is satisfied. Then Theorem 1.7 will
yield the desired resulit.

The main result of this section can now be stated as follows.

THEOREM 2.1. Let each g€ G have at most n— 1 zeros with sign
changes in X and let z € X such that G satisfies the Haar condition on
X‘\{z}. Then there exists a unique pointwise-Lipschitz-continuous quasilinear
selection for P.

The uniqueness of such a selection follows directly from a result of
Garkavi [7]. This author has shown that for any finite dimensional Z-
subspace G of C(X) the set of functions f€ C(X) having a unique best
approximation with respect to G lies dense in C(X). Therefore we may
expect at most one continuous selection.

To prove the existence we have only to show that G satisfies condition
(1.2) while condition (1.1) is trivially satisfied. Then the statements of
Theorem 1.5(ii) and of Theorem 1.7 complete the proof. Note that each X
defined in this section obviously has the additional properties as have been
required in Section 1. Furthermore one can see that the particular choice of
X ensures that each G satisfying the hypothesis of Theorem 2.1 must be a Z-
subspace of C(X). Therefore Theorem 2.1 yields a partial converse to
Lemma 1.1.

By the preceding arguments the next lemma will complete the proof of
Theorem 2.1. To prove this we will need some properties of weak Chebyshev
spaces as have been shown in [21]. An n-dimensional subspace G of Cy(T),
where T is any locally compact subset of the real line is said to be weak
Chebyshev if each g € G has at most n — 1 sign changes, i.e., there do not
exist points f, <t, < --- <¢, in T with g(¢;,_,) g(t,) < 0 for i = L,..., n.

LEMMA 2.2. Let each non-zero g € G have at most n distinct zeros on X
and at most n— 1 zeros with a sign change in X. Then the following
statements hold:
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(i) There exists a minimal finite set of points Z = (z, .., z,,} such that
G satisfies the Haar condition on X\Z.

(it For any n distinct points x,.,.., x,,EX’ there are neighborhoods
Uisi=1,..,n of x; such that eDy(y,,...y,) >0, €= +1, for all n-tuples
(Y19 Yu) ETTIZ1 U, for which {y |y, y ) NZ = 2.

Proof. (i) Since no non-zero g € G vanishes on an open subinterval of
X and each g€ G has at most n— 1 zeros with a sign change, for every
JE L., 1}, G|,j is a weak Chebyshev subspace with dimension n.
Furthermore, by hypothesis, each non-zero g€ G has at most n distinct
zeros on X. Therefore if, for some JE€ {L.., I}, G does not satisfy the Haar
condition on I;, using Theorem 4.6 in Sommer and Strauss [21], we can
conclude that there is a point y; € I; such that G satisfies the Haar condition
on I)\{y;} and, in case y, € int I;, g(y;) =0 for all g € G. We distinguish:

If for some j€ {l...,!}, y;€int I;, then by the preceding argument no
non-zero g € G can have n distinct zeros on X\{y,} and, setting Z = {y,}, the
statement is proved. But if, for all j € {1...., I}, G satisfies the Haar condition
on int I;, then, setting Z = bd X, the statement will follow Eor Z instead of Z.
Then this implies that there is a minimal subset Z of Z with the desired
property. We first should observe that the particular choice of X implies that
Z is a finite set. Now suppose that G does not satisfy the Haar condition on
X\bd X. Then there must be n distinct points x, < --- < x, in int X and a
non-zero function g, € G with gy(x,)=0 for i=1,...,n. Since g, may not
have n zeros with a sign change, we may assume that there is a positive
constant ¢ such that g,x)>0 on [x,—e¢ x, +€], x#x,, where
[x,—&x, +€]c;cX. Now choosing a point x,€ [x,—¢&,x,) and
following the proof of Lemma 1.6 it turns out that there is an i € {0,..., n}
such that Dg(Xg ... X;_ 5 X4 g sees X)) # 0. Then Dg(x, ..., x,,) = 0 implies that
i > 1. We distinguish:

First case. All Zeros x,,.., X;_1, X;, 1 »- X, are zeros with a sign change.
Since by hypothesis G satisfies the Haar condition on int /; and x, € int [,
there is a §€ G with g(x,)> 0. Then for a sufficiently small positive
constant ¢ the function g, — c§ has at least n zeros with a sign change in X
which contradicts the hypotheses on G.

Second case. There is a further zero x;,/>2, I#1i, of g, such that g,
does not change the sign at x;. Then Dg(Xq s X;_ 15 X4 1 soees X,,) # O implies
the existence of a function h, € G satisfying hy(x,) =1 and hy(x;)=sgn
golx;— 8)), j=1,..,n,j #1i, with §,> 0 sufficiently small. Then it is easily
verified that for a sufficiently small constant ¢ the function g, — ch, has at
least n zeros with a sign change in X which is a contradiction again.

Thus we have shown that G satisfies the Haar condition on X\bdX.
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(i) Let Z be a minimal finite subset of X such that G satisfies the
Haar condition on X\Z. The existence of such a set Z follows from
statement (i). Let any n distinct points x,,.,x,EX be given. If
{X15es Xo} N Z = @, then statement (i) implies that Dg(x,,..., x,) # 0. By the
continuity of D, at the n-tuple (x,,..., x,) the statement is proved.

Therefore we must study the case when {x,,..x,}NZ#*g We
distinguish three cases.

First case. Z = {z} and z € int X. Then from the arguments established
in (i) it follows that g(z)=0 for all g € G. This means that for all points
Xy yeeey X, € X, D(2, X3 ey X,) = 0. Now suppose that for some distinct points
Xy X, in X\{z} there do not exist neighborhoods U, of z and U, of x,,
i=2,..,n, such that

EDG(V1s Yy Vp) >0, =],

for all n-tuples

(ylw-a yn) € n Ui
i=1

for which z € {y,,..., y,}. This implies the existence of sequences {z,}, {7},
{xubs {Xu}cX\{z} with z,>2z, Z,->2z, x,—>x;, X,—x; for k— o0,
i=2,.., n, such that

D2y Xagones Xi) DG(Zis Xopseres X)) < 0 for all k.

Then it follows from z,  z, 7, # z that

Dz Xy 500 X)) D215 X3 5000y X,,) < O for all .

Therefore the function g, € G defined by
8o(x) :=Dg(x, x5,y X,,)

has a zero with a sign change at z and n — 1 further zeros x,,..., x,,. Without
loss of generality we may assume that there are sufficiently small positive
constants &, such that [x, — §,, x,] = X. Then the Haar condition on X\{z}
implies the existence of a function §,E G with §,(x,)=sgn g,(x;— 9,).
However, choosing a sufficiently small positive constant ¢, it turns out that
8, — cg, has at least n zeros with a sign change in X which contradicts the
hypotheses on G.

Second case. Z = {z} and z € bdX. This case can be treated as the
following case.
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Third case. Z = {z,, wZyt,m > 1. Following the proof of statement (1)
we have that z, € bd X for i = 1,..., m. Now let n distinct points x,,..., x, € X
be given. Wlthout loss of generality we may assume that
(Xypes X b N Z = {x{ s, X,} = {Z| s, 2,}. We furthermore may assume that
for i = 1,..., r there are positive constants &, > 0 with [z;,z, + §,) c X. Then
(z;,2;+6)NZ=@ and z;€bdX implies that these sets are open
neighborhoods of z;. As in the first case we must only prove that for
i = l,..., r there are neighborhoods U, of z, such that

EDGY sees Yy Xpy [ 5ees X) > 0, e=+1,

for all n—tuples (y;,c, ¥y X,p oo X,) With ¥y, EU\N{z,}, i= l,...,7. We
define a function 4 in r variables by

A sy P)i= DV seees Vs Xy L oeres Xy e

Then the statement is proved if for all y, € (z;,z;+ ;) and i=1,...,r the
function h always assumes the same sign. Suppose that in each interval
(z;52; +5) there are two points ,, y;, 7, <J; such that h(yl,yz, wb,) -
kP, Fy s J,) < 0. Then h must have a zero at (¥, ,..., 7,), where y, € [y,,y,]
i=1,.,r. This means that Dg(J,,..., V,. X, 5. X,) =0. But this is not
possible because (z;,z;+ )N Z =@ implies that {J,,.., 7, X, s X, N
Z =@. This completes the proof.

It is not difficult to construct subspaces of C(X) admitting pointwise-
Lipschitz-continuous selections. This can be done as follows.

ExampLE 1. Let G =span{g,..., g,} be a Chebyshev subspace of c(X )
Let g, € C(X), 802 0, on X with exactly one zero on X. Then the space G
defined by G:=span{g,:g,,..8 &, satisfies the hypotheses of
Theorem 2.1.

In the case X = [a, b], a real compact interval Niirnberger [11] has shown
that the weak Chebyshev property is necessary for existence of continuous
selections. As has been defined before Lemma 2.2, an n-dimensional space G
is said to be weak Chebyshev if each g € G has at most n — 1 sign changes
or, equivalently, if for a given basis g,,...g, of G the inequality
€D (X, X,) 2 0, €=+ 1, holds for all points x, < --- < x, in X. In our
general situation weak Chebyshev is no longer necessary for existence of
continuous selections. Using Example 1 we can construct spaces G which are
not Chebyshev and also not weak Chebyshev, however admit pointwise-
Lipschitz-continuous selections for P;. For n=1 the existence of such
spaces follows from results of Lazar ef al. [8].
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ExampLe 2. Let X=[-1,1]U[2,3]U[4,5] and G=span{g;,..&,}
where g, € C(X) be defined by

x-Uif xe€[-1,1]U[4,5]

, for i = 1,.., 1.
—x"'if xe (2,3 ort 7

gix): =

Furthermore let g, € C(X) be defined by

x| if x€el[-1,1]

go(x): = 1 it xe[2,3]U[4,5].

Then G is a Chebyshev subspace of C(X). Using Example 1 we can show
that the space G defined by G :=span{ g, - &, ., £ - £,} admits a pointwise-
Lipschitz-continuous selection for Pz. But G is not Chebyshev and also not
weak Chebyshev.

Finally we would like to ask if the complete converse to Lemma 1.1 will
be true. In the case X = [a, b] the answer is “yes,” because the following
statements are equivalent as has been shown in [21]:

(i) Each non-zero g € G has at most n distinct zeros and at most
n— 1 zeros with a sign change in |a, b].

(ii) G satisfies condition (1.2) and also the Haar condition on
la, b)\{x} for a certain X € [a, b).

Unfortunately the equivalence of these statements fails if X is an arbitrary
compact subset of the real line as we have shown in [20] by an example.
Therefore the statement of Theorem 2.1 does not yield the complete converse
to Lemma 1.1. However, we conjecture that statement (ii)} of Theorem 1.5
still holds if G satisfies the conditions (1.1) and (1.2) and each non-zero
g€ G has at most n distinct zeros on X. Then using Lemma 2.2 and
Theorem 1.7 we would obtain the converse to Lemma 1.1.

REFERENCES

1. H. P. BLATT, G. NURNBERGER, AND M. SOMMER, A characterization of pointwise-
Lipschitz-continuous selections for the metric projection, Num. Funct. Anal. Optim, in
press.

2. H. P. Bratrt, G. NOURNBERGER, AND M. SOMMER, Pointwise-Lipschitz-continuous
selections for the metric projection, in “Approximation Theory III, Austin 1980” (W.
Cheney, Ed.), Academic Press, New York, 223-228.

3. A. L. BRowN, On continuous selections for metric projections in spaces of continuous
functions, J. Funct. Anal. 8 (1971), 431-449,

4. A. L. BROWN, An extension to Mairhuber’s Theorem. On metric projections and discon-
tinuity of multivariate best uniform approximation, preprint.

640/34/2-3



130 MANFRED SOMMER

5.

10.

1L

12.

13.

14.

16.

17.

18.

20.

21.

22,

F. DeutscH AND P. KEnDEROV, Continuous selections for the metric projection, in
“Approximation Theory III, Austin 1980” (W. Cheney, Ed.), Academic Press, New
York, 327-333.

. G. FrReup, Eine Ungleichung flir Tschebyscheffsche Approximationspolynome, Acza. Sci.

Math. (Szeged) 19 (1958), 162-164.

. A. L. Garkavi, Almost Chebyshev systems of continuous functions, Amer. Math. Soc.

Transl. 96 (1970), 177-187.

. A. J. LAzARr, P. D. Morris, aAND D. E. WuULBERT, Continuous selections for metric

projections, J. Funct. Anal. 3 (1969), 193-216.

. G. MEINARDUS, “Approximation of Functions: Theory and Numerical Methods,”

Springer-Verlag, Berlin, 1967.

G. NURNBERGER, Schnitte fiir die metrische Projektion, J. Approx. Theory 20 (1977),
196-220.

G. NURNBERGER, Nonexistence of continuous selections of the metric projection and
weak Chebyshev systems, SIAM J. Math. Anal. 11 (1980), 460—467.

G. NURNBERGER, Continuous selections for the metric projection and alternation, J.
Approx. Theory 28 (1980), 212-226.

G. NURNBERGER AND M. SOMMER, Weak Chebyshev subspaces and continuous selections
for the metric projection, Trans. Amer. Math. Soc. 238 (1978), 129-138.

G. NURNBERGER AND M. SOMMER, Characterization of continuous selections of the
metric projection for spline functions, J. Approx. Theory 22 (1978), 320-330.

. I. SINGER, “Best Approximation in Normed Linear Spaces by Elements of Linear

Subspaces,” Springer-Verlag, Berlin, 1970.

M. SoMMER, Continuous selections of the metric projection for 1-Chebyshev spaces, J.
Approx. Theory 26 (1979), 46-53.

M. SoMMER, Characterization of continuous selections for the metric projection for
generalized splines, SIAM J. Math. Anal. 11 (1980), 23-40.

M. SoMMER, Nonexistence of continuous selections of the metric projection for a class of
weak Chebyshev spaces, Trans. Amer. Math. Soc. 260 (1980), 403—409.

. M. SOMMER, Characterization of continuous selections of the metric projection for a class

of weak Chebyshev spaces, SIAM J. Math. Anal., in press.

M. SOMMER, Finite dimensional subspaces and alternation. J. Approx. Theory 34 (1982),
131-145.

M. SomMER AND H. STRAUSS, Eigenschaften von schwach Tschebyscheffschen Rédumen,
J. Approx. Theory 21 (1977), 257-268.

M. SoMMER, Continuous sclections for metric projections, in “Quantitative Approx-
imation, Bonn 1979” (R. DeVore and K. Scherer, Eds.), pp. 301-317, Academic Press,
1980.



