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We study the problem of existence of pointwise-Lipschitz-continuous selections
for the metric projection. We first approximate by finite dimensional subspaces of
C(X) where X is a certain compact Hausdorff space and give a sufficient condition
for existence of such selections. We apply this result to the case when X is the
union of finitely many compact real intervals and get in this case a partial converse
to a recent result of Brown.

INTRODUCTION

Let X be a compact Hausdorff space and C(X) the space of all real-valued
continuous functions I on X under the uniform norm 11/11: =
sup{l/(x)l: x E Xl. If G is a subspace of C(X), then for all IE C(X) the set
Pa(f): = {goE G: 11/-goll = infHI/-gll:gE G}} is the set of best uniform
approximations to I from G. This defines a set-valued mapping Pa which is
called the metric projection onto G. A mapping s: C(X) -+ G is called a
selection for Pa if sU) E PaU) for all IE C(X). Furthermore, a selection s
for Pais called pointwise-Lipschitz-continuous if, for each IE C(X), there
exists a constant K, > 0 such that, for each IE C(X), II s(f) - s(J) II ~
K,II 1-.i11 (this clearly implies that s is continuous). A selection s is called
quasilinear if, for each IE C(X), for each g E G and for all constants c, d,
the relation s(cl+ dg) = csU) + dg holds.

In this paper we study the problem of existence of continuous and
pointwise-Lipschitz-continuous, quasilinear selections for metric projections.
This problem has been considered by a number of authors in the last years.
Lazar et al. [8] have been the first to study this problem. They have charac­
terized those one-dimensional subspaces G of C(X) which admit continuous
selections for Pa' By using the theory of weak Chebyshev spaces,
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Nurnberger and Sommer (see [II, 13, 14,16-19]) have completely charac­
terized those finite dimensional subspaces G of C[a, b], where [a, b] is a
compact real interval, which admit continuous selections for PG' Recently,
Blatt et at. [I] have shown that each continuous selection constructed by
Nurnberger and Sommer is even pointwise-Lipschitz-continuous which is a
strong property of the metric projection and also quasilinear. For locally
compact subspaces X of the real line Nurnberger [12] has been able to show
the existence of continuous selections for PG' in case G is an element of a
class of finite dimensional weak Chebyshev subspaces of C(X) and Deutsch
and Kenderov [5] have studied this problem in the case when X is a normed
linear space.

Recently, Brown [4] has been concerned with finite dimensional subspaces
G of C(X) with the property that no non-zero function in G vanishes on all
points of some non-empty open subset of X. Such spaces are called Z-spaces.
The preceding property implies that if G is a Z-space with dimension at least
two, then X can have no isolated points. Brown has given a description of
those X for which there is a Z-subspace G admitting a continuous selection
for PG' For example, one of his main results which is an extension of
Mairhuber's theorem is the following: Suppose that there exists a Z-subspace
G of C(X) with dimension at least two such that there is a continuous
selection for PG' If X is metrisable, then X is homeomorphic to a subspace of
a circle.

Using the arguments established by Brown it is easily verified that the
existence of a continuous selection for PG' where G is an n-dimensional
subspace of C(X), implies that each non-zero g E G has at most n distinct
zeros on X and at most n - I zeros with a sign change in X (Lemma 1.1). In
this paper we study the problem of conversing this statement. We are
therefore concerned with those n-dimensional subspaces G of C(X) whose
non-zero elements have only finitely many zeros. In [201 we have shown
that, under appropriate hypothesis on X, there is a class of these spaces such
that for each G contained in this class each fE C(X) has a particular best
approximation go E PG(f) which is called alternation element
(Definition 1.4, Theorem 1.5). In that paper we furthermore have given a
sufficient condition for uniqueness of alternation elements (Theorem 1.5).
This result immediately applies to our studies because the property that each
fE C(X) has a unique alternation element gf E PG(f) implies the existence
of a quasilinear, pointwise-Lipschitz-continuous selection s defined by
s(f):= gf (Theorem 1.7).

In Section 2 we apply our results established in Section I to the case when
X = U)= 1 Ij , the union of finitely many compact real intervals. We show the
following result which gives for this particular X a partial converse to the
results of Brown: Let G be an n-dimensional subspace of C(X). If each g E G
has at most n - I zeros with sign changes and if there is a z E X such that G
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satisfies the Haar condition on X\{z}, then there exists a pointwise-Lipschitz­
continuous, quasilinear selection for PG (Theorem 2.1). This theorem yields
the first result on existence of spaces G with dimension at least two
admitting continuous and even pointwise-Lipschitz-continuous selections for
PG although G is not Chebyshev and also not weak Chebyshev (Example 2).
Therefore this situation is quite different from the case X = [a, b], because
there the weak Chebyshev property is necessary for existence of continuous
selections (see Niirnberger [11 D. Our results and also, for one-dimensional
spaces, the results of Lazar et al. [8] show that the number of the zeros with
a sign change of the functions in G plays the fundamental role for existence
or nonexistence of continuous selections, however, not the number of the sign
changes while for X = [a, b] the continuity of the functions in G does not
allow a difference between sign changes and zeros with a sign change.

Using the arguments established in this paper it is easily verified that all
results given here are also true if X will be replaced by a corresponding
locally compact Hausdorff space T and C(X) by Co(T), the space of all real­
valued continuous functions f on T vanishing at infinity, i.e., for each e > 0
the set {xE T: If(x)1 ~e} is compact.

1. A SUFFICIENT CONDITION FOR THE EXISTENCE OF

POINTWISE-LIPSCHITZ-CONTINUOUS SELECTIONS

In the following X will be any compact Hausdorff space and X a compact
Hausdorff space satisfying the following property: For each sequence
{xd c X converging to x E X and each neighborhood U of x there is an
integer ko such that for all points x k , xi< E U, k ~ ko' f ~ ko' there is a path
P from x k to xi< completely contained in U.

Furthermore, in the following G will always denote an n-dimensional
subspace of C(X) and of C(X), resp. with n ~ 2 and X resp. X will contain at
least one non-isolated point. For brevity we will give some notations and
definitions only for the more general space X but we always will assume that
the same has been done for the space X.

Recently, Brown [4] has given a description of those X for which there is
a Z-subspace G with dimension at least two admitting a continuous selection
for PG' Following his arguments in the proofs of Lemma 3 and Lemma 6 the
following statement is easily verified.

LEMMA 1.1. If G is a Z-subspace of C(X) with dimension n such that G
admits a continuous selection for PG' then each non-zero g E G has at most n
distinct zeros on X and at most n - 1 zeros with a sign change in X.
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We say that a function fE C(X) has a zero x with a sign change in X if
for each neighborhood U of x there are two points Y"Y2 E U such that
f(YI)fly2) < 0.

If X = [a, b], a real compact interval, then the converse to Lemma 1.1
follows directly from the results of Niirnberger and Sommer [13]. Therefore
we conjecture that the converse also holds in our general situation.

In the following we will study this problem. We first introduce an
important class of n-dimensional subspaces of C(X).

DEFINITION 1.2. We say that G satisfies the Haar condition on a subset
Y of X if each non-zero g E G has at most n - 1 zeros on Y. G is said to be
Chebyshev if Pdf) is a singleton for each fE C(X).

The proof of the following classical result can be found in the book of
Meinardus [9].

THEOREM 1.3. The following statements are equivalent:

(i) G is Chebyshev.

(ii) G satisfies the Haar condition on X.

(iii)

for each basis gl ,..., gn of G and all n distinct points XI"'" x nE X.

For brevity we set DdxI , ..., xn ):= det(g;(xJ))?J = I for all points
XI '00" xnE X, where gl ,..., gn is a fixed chosen basis of G.

Henceforth we will suppose that G satisfies the following conditions:

(1.1 ) There is a minimal finite subset Z = {z " ..., Z m f of non-isolated
points of X such that G satisfies the Haar condition on X\Z.

(1.2) For any n distinct points x"..., x n E X there are pairwise disjoint
neighborhoods Ui of Xi' i = 1,... , n, such that eDG(Y1 ,..., Yn) ~ 0, e = ±1 for
all Y/ E Ui , i= 1,..., n.

Then these both conditions imply that for any n distinct points
x"... , x n E X the inequality eDG(y"... ,Yn) > 0, e = ± 1, holds for all those n­
tuples (Y"...,Yn)E 07=1 U/ for which {Y"...,YnfnZ=0. This will play an
important role for the existence of particular best approximations.

The preceding arguments allow the following notation: Let any n + 1
distinct points Xo,..., x n E X be given. Then for each subset {xo,..., Xi -I'
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X I+I""'Xn} of {xo,""xn} there are neighborhoods Uj of xj,j=O,...,n,j*-i
such that eDG(Yo'''''YI-l' YI+l' ...,Yn) > 0, e = ±l, for all those n-tuples

n

(YO'''·'YI-I'YI+I' ..·,Yn)E n Uj
j~O

j*i

Using this notation we define certain best approximations as follows.

DEFINITION 1.4. If fE C(X), then go E PG(f) is said to be an alternation
element (AE) off, if there exist n + 1 distinct points Xo,..., x n E X such that

i = 0,..., n, e = ± 1.

The points Xo,..., x n are called oriented extreme points (OE-points) off-go'

In [201 we have shown the following results on existence and uniqueness
of AEs which are the key results for existence of pointwise-Lipschitz­
continuous selections.

THEOREM 1.5. Let G be an n-dimensional subspace of C(X) and of C(X),
respectively such that G satisfies conditions (1.1) and (1.2). Then the
following statements hold:

(i) EachfE C(X) has at least one AE go E PG(f)·

(ii) If Z is a singleton, then G c C(X) implies that eachfE C(X) has
at most one AE and G c C(X) implies that eachfE C(X) has a unique AE.

(iii) If eachfE C(X) has a unique AE, then each non-zero g E G has
at most n distinct zeros.

We will now show that uniqueness of an AE always implies the existence
of a pointwise-Lipschitz-continuous selection. To prove this we first give the
following lemma:

LEMMA 1.6. Let each g E G have at most n distinct zeros and let n + 1
distinct points to'"'' tnE X be given. If Z n {to,"" tn}*- 0, then there is an
integer i E {O,..., n} such that t l E Z and DG(to,"" t l _1' t i + 1''''' tn) *- 0.

Proof Let n + 1 distinct points to,"" tn E X be given such that
{to ,..., tn}n Z *- 0. Then without loss of generality we may assume that
Z n {to,... , tn}= {to,"" tm }. Now suppose that for each i = 0,..., m,
DG(to,...,tl _1' t l + I , ... , tn)=O. This implies the existence of non-zero
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functions gl E G, i = 0,..., m, satisfying gl(tj ) = 0 for j = 0,..., n,j *" i. Since
each non-zero g E G has at most n distinct zeros, it follows that gl(tl) *" O.
Therefore the functions go ,..., gm are linearly independent on X. Furthermore
it follows from jtm +I'... ,tn lnZ=0 and condition (Ll) that for each
i = m + 1,... , n there is a linearly independent function gi E G satisfying
gl(tl) = I and gi(t) = 0 for j = m + 1,... , n,j *" i. Summarizing all these
arguments we have got n + 1 linearly independent functions in G which
contradicts the hypothesis that dim G = n.

We are now in a position to prove the main result of this section.

THEOREM 1. 7. Iflor each IE qX) there exists a unique AE gf E PG(J),
then the map s:qX) -+ G defined by s(J):= gf is a quasilinear, pointwise­
Lipschitz-continuous selection lor PG'

Proof We first show that s is continuous at f Suppose that s is not
continuous at f Then there exist functions IE qX), go E PG(J) and a
sequence {Ik} c qX) such thatlk -+ f, S(Jk) -+ go but go *" s(J) = gf' We will
show that go is also an AE ofI and this will contradict the uniqueness of gf'

Since, for each k, S(Jk) is an AE of Ik' for each k there exist n + 1 OE­
points tOk "'" tnk such that

ek(-1)1.1 I(tOk'''·' tnk)(Jk - S(Jk»(tlk )

= Il/k - s(Jk)ll, i = 0,..., n, ek = ± 1.

Without loss of generality we may assume that ek = e and tlk -+ tl E X. Then
following the proof of Theorem 1.5 in [20] we can show that all points t i are
distinct and .1 t(tOk"'" tnk) -+ .1/(to ,..., tn) for k -+ 00 (in [20] we only have
been able to prove this for the case that G is an n-dimensional subspace of
qX). Therefore we have chosen here the same hypothesis on G. All
following arguments in this proof are even true if we replace X by X).

Therefore go must be an AE of I and thus we have shown that s is
continuous at f

Using the proof of Corollary 1.3 in [12] it is easily verified that s is
quasilinear.

We now prove that s is even pointwise-Lipschitz-continuous. Suppose that
s is not pointwise-Lipschitz-continuous. Then there exist a function IE C(X)
and a sequence Uk I c qX) such that for each k

Ils(Jk) - s(J)11 > k Il/k-III· (*)

We may assume thatlk -+f, since otherwise there exist a subsequence of {Ik f
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which we again denote by {fk} and a constant Ko > 0 such that for each
k, III- Ikll > K o' This implies that for each k

Ils(f) - s(fk) II ~ Illk - S(fk) II + III - s(f)11 + III- Ikll

~ Il/k - s(f)11 + III- s(f) II + lif- Ikll

~ 2(111- s(f)11 + Ilf- fkll)
~ 2(11/11 + Ilf - Ikll)

~ 2 elL" + I) 1I/-lkll

which is a contradiction to inequality (*).
Since for each k, s(fk) is an AE of Ik' for each k there exist n + 1 OE­

points tok "'" tnk E X such that..
ek(-I)ILfI(tOk"'" tnk)(lk - S(fk»(t1k)

= II J;. - S(lk) II, i = 0,..., n, ek = ± 1.

We may assume that, for each k, ek = e. Since s is continuous at/andlk-+f,
we furthermore may assume that there are n + 1 distinct points to,"" tn E X
such that tlk -+ t l and

i= 0,..., n.

We will now show the existence of a constant C> ° such that
IIs(f)-s(fk)II~CII/-lkllwhich will contradict inequality (*). To do this
we will study the behavior of the functions s(f) - s(fk) on a certain subset
Uj of X. For defining this set we first select a point ij E lto ,..., tn} as follows:

If Z n {to ,..., tnf = 0, then condition (1.1) implies that for j = 0, , n,
DG(to ,..., tj _1' tj +1"'" tn) '* O. If there is a non-isolated point tj E lto , , tn},
then we set ij := tj • If not, then we choose an arbitrary point z E Z, which is
non-isolated by definition of Z, and set io := z.

If {to, ... ,tn}nz,*O, then using Theorem 1.5(iii) and Lemma 1.6 we
obtain a point tj E zn lto"'" tn} such that DG(to,"" tj _ 1 , tj +1"'" tn) '* O. We
set i j := tj •

This point ij leads to a subset Uj of X as follows: We first define n + I
points io,..., in by il := t I for i = 0,..., n, i '* j and ij := ij" Then for i = 0,..., n
condition (1.2) of G implies the existence of closed neighborhoods
UI/' 1= 0,..., n, I-t= i of i[ such that ~IDG(io"'" i l _1' ii+ 1"'" in) > 0, ~I = ± I,
for all n-tuples

n

(io'···'~-l,fI+I'···,fn)E n Ui/
1=0
[*i
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for which

We set
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{{o,..., {j-I' {j+I"'" in} n z = 0.

n

UI := n Uil'
j=O

1*1

Each UI is a closed neighborhood of (I' This implies the existence of an
integer ko such that tlk E UI for 1= 0,..., n, I *"j, and all k ~ ko' Therefore it
follows that

for all x E Ui and all k ~ ko.
If ii *" ti , then following the construction of iJ we see that to,'''' tn are

isolated points. In this case there must even be an integer k 1 ~ ko such that
tjk = t j for i = 0,..., n and all k ~ k l . For estimating the functions s(f) - S(fk)
we need a special basis of G. It follows from Ddto,'''' ti - 1 , tJ+ 1"'" tn) *"°
that for i = 0,..., n, i *" j there are functions gl E G defined by

satisfying gj(tj ) *" 0, where cj := Aj(to'"'' ti - I , ti , ti +I , ... , tn)/Aj(to'"'' ti~ I'

ii'tJ+I'...,tn). Then it is easily verified that go,· ..,gJ-l'gi+ 1''''' gn form a
basis of G (the constants ci are only essential in the case when ~ *" ti , i.e., in
the case when all points to,'''' tn are isolated). Therefore each g E G can be
'written as

n

g= L g(tl) gj'
j=O

j*i

In particular, for each k we have

n

e(-ly+ I(s(f) - S(fk»(X) = L e(-ly+ I (s(f) - S(fk»(tl) . gl(x)
1=0
I*i

n

L e(-ly+l(s(f) - S(fk»(tl) . sgn gl(x) .j gl(X) I
1=0
I*i

n

= L e(-ly+I(S(f)-s(fk»(tj). c/(_1)j+i+ 1

j=O

I*i

X sgn DG(to,..., tl_1' tl+ 1"'" ti -1' x, tJ+ 1''''' tn) Igj(X) I
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n

= L e(-1)I(s(f)-s(h»(tl )c;
1=0
1'1)

X sgn DG(to,..., tl _1' t; + 1"'" tj _" x, tj+ p"" tn) Igl(x)l.

We furthermore need the inequality

e(-1)IA;(to,· .., tn)(s(/) -s(fk»(t l )

= e(-1);A I(to"'" tn)(s(f) -I+Ik - S(lk) +I - Ik)(t;)

:< -1/1- s(f)11 + Ilh - s(fk) II + III- Ikll
:< -III- s(f)11 + Illk - s(f)11 + III- Ikll
:< -III- s(f)11 + Illk -III + III- s(f)11 + III- Ikll
= 211/-Ikll·

Analogously we can show that for each k,

123

Summarizing all preceding arguments, for all k and all x E Uj we obtain the
relation

e(-ly+ '(s(f) - s(fk»(X)

n

= ~ e(_1)I(s(f) - S(fk»(t;) c;
;=0
I""j

= ~ e(-1)I(s(1) - s(fk»(t;) c;
lEI

(where [:= {i E {O,..., n}. i *j:

= ~ e(-1)I(s(1) - S(fk»(t;) AI(to,"" tn)1 g;(x) I
;EI

:< ~ 211/-Iklll gl(x) I
lEI

n

:< 211/-Ikll L II g;11 = M, III- Ikll,
;=0
I""j
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n

M[:=2 ~ II gill-
1=0
I*j

Now choosing for each k the same integer j as for to ,... , tn we can easily
show that for each x E U} and each k ~ k, the inequality

n

e(-ly+'(s(f) - S(fk»(X) ~ -211!- !kll L II glkll = -M2 11!- !kll
1=0
I*}

holds, where

n

M 2 := 2 sup ') II glkll
k>k[ ;"::'0

I*}

and for i = 0,..., n, i *" j, g/k is defined by

with

Since g/k -+ g/ for k -+ 00, it follows the existence of a positive constant
M ~ max{M" M 2 } such that for all k ~ k,

By construction the point ~ is non-isolated. This guarantees that the
neighborhood U} of ~ contains infinitely many elements. Then, since by
Theorem 1.5(iii) each non-zero g E G has at most n distinct zeros,
compactness arguments imply that there is a positive constant L satisfying
minll gil = , II glluj= L. Setting g:= (s(f) - s(fk»lls(f) - S(fk) II we obtain the
inequality

for all k ~ k, which contradicts inequality (*).
This shows that s is pointwise-Lipschitz-continuous and completes the

proof.
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2. ApPUCATIONS AND EXAMPLES
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This section is concerned with linear subspaces G of C(X), where X is
chosen as

the union of finitely many non-degenerate real compact intervals.
In the following let G again denote an n-dimensional subspace of qX),

n~ 2. Using the results proved in Section 1 we will give a partial converse to
Lemma 1.1 by showing that for all elements of a class of n-dimensional Z­
subspaces of C(X) uniqueness of the AEs is satisfied. Then Theorem 1.7 will
yield the desired result.

The main result of this section can now be stated as follows.

THEOREM 2.1. Let each g E G have at most n - 1 zeros with sign
changes in X and let z E X such that G satisfies the Haar condition on
X\ {z}. Then there exists a unique pointwise-Lipschitz-continuous quasilinear
selection for PG'

The uniqueness of such a selection follows directly from a result of
Garkavi [7]. This author has shown that for any finite dimensional Z­
subspace G of qX) the set of functions fE qX) having a unique best
approximation with respect to G lies dense in qX). Therefore we may
expect at most one continuous selection.

To prove the existence we have only to show that G satisfies condition
(1.2) while condition (1.1) is trivially satisfied. Then the statements of
Theorem l.5(ii) and of Theorem 1.7 complete the proof. Note that each X
defined in this section obviously has the additional properties as have been
required in Section 1. Furthermore one can see that the particular choice of
X ensures that each G satisfying the hypothesis of Theorem 2.1 must be a Z­
subspace of C(X). Therefore Theorem 2.1 yields a partial converse to
Lemma 1.1.

By the preceding arguments the next lemma will complete the proof of
Theorem 2.1. To prove this we will need some properties of weak Chebyshev
spaces as have been shown in [21]. An n-dimensional subspace G of Co(T),
where T is any locally compact subset of the real line is said to be weak
Chebyshev if each g E G has at most n - 1 sign changes, i.e.• there do not
exist points to < t l < ... < tn in T with g(t i _ l ) g(ti ) < 0 for i= 1,.... n.

LEMMA 2.2. Let each non-zero g E G have at most n distinct zeros on X
and at most n - 1 zeros with a sign change in X. Then the following
statements hold:
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(i) There exists a minimal finite set ofpoints Z = {z I , ••• , Z m} such that
G satisfies the Baar condition on X\.Z.

(ii) For any n distinct points XI ,•••, x" E X there are neighborhoods
U;, i = 1,... , n of x; such that eDG(y"... ,y,,) > 0, e = ± 1, for all n-tuples
(Y"..·,Y,,) En7~1 Udor which {Yt,... ,y,,} n z = 0.

Proof (i) Since no non-zero g E G vanishes on an open subinterval of
X and each g E G has at most n - 1 zeros with a sign change, for every
j E {I,..., If, Gil} is a weak Chebyshev subspace with dimension n.
Furthermore, by hypothesis, each non-zero g E G has at most n distinct
zeros on X. Therefore if, for some j E {I,..., If, G does not satisfy the Haar
condition on I j , using Theorem 4.6 in Sommer and Strauss [21], we can
conclude that there is a point Yj E Ij such that G satisfies the Haar condition
on Ij\{Yjf and, in case Yj E intIj , g(Yj) =°for all g E G. We distinguish:

If for some j E {I,..., n, Yj E int Ij , then by the preceding argument no
non-zero g E G can have n distinct zeros on x\'{Yj} and, setting Z = {Yjf, the
statement is proved. But if, for all j E {I,... , I}, G satisfies the Haar condition
on int Ij , then, setting i =bd X, the statement will follow for i instead of Z.
Then this implies that there is a minimal subset Z of i with the desired
property. We first should observe that the particular choice of X implies that
i is a finite set. Now suppose that G does not satisfy the Haar condition on
X\.bd X. Then there must be n distinct points x I < <x" in int X and a
non-zero function go E G with go(x;) = °for i = 1, , n. Since go may not
have n zeros with a sign change, we may assume that there is a positive
constant e such that go(x»O on [xl-e, xl+e], x*x" where
[XI - e, XI + e] C I j C X. Now choosing a point X oE [XI - e, XI) and
following the proof of Lemma 1.6 it turns out that there is an i E {O,..., n}
such that Da(xo,""x;_"x;+i""'x,,)*O. Then DG(x"...,X,,) =0 implies that
i ~ 1. We distinguish:

First case. All zeros x 2 ,,,,,x;_i'x;+,,,,,,x,, are zeros with a sign change.
Since by hypothesis G satisfies the Haar condition on int I j and X I E int I j ,

there is agE G with g(x l ) > 0. Then for a sufficiently small positive
constant c the function go - cg has at least n zeros with a sign change in X
which contradicts the hypotheses on G.

Second case. There is a further zero Xl' I ~ 2, 1* i, of go such that go
does not change the sign at Xl' Then Da(xo,,,,,x1_,,xi+,,""x,,)*O implies
the existence of a function hoE G satisfying ho(xo) = 1 and ho(xj ) = sgn
go(xj - 0), j = 1,... , n,j * i, with OJ >°sufficiently small. Then it is easily
verified that for a sufficiently small constant c the function go - cho has at
least n zeros with a sign change in X which is a contradiction again.

Thus we have shown that G satisfies the Haar condition on X\.bdX.
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(ii) Let Z be a minimal finite subset of X such that G satisfies the
Haar condition on X\Z. The existence of such a set Z follows from
statement (i). Let any n distinct points x l''''' xn E X be given. If
{x l''''' xn f n Z = 0, then statement (i) implies that DG(xl'... , x n) =#= O. By the
continuity of DG at the n-tup1e (XI'"'' xn) the statement is proved.

Therefore we must study the case when {x p ...,xn fnZ=#=0. We
distinguish three cases.

First case. Z = {z f and z E int X. Then from the arguments established
in (i) it follows that g(z) = 0 for all g E G. This means that for all points
x 2"'" xn EX, DG(z, x 2 "'" x n) = O. Now suppose that for some distinct points
x2 , ... , xn in X\ {z f there do not exist neighborhoods VI of z and Vi of XI'

i = 2,..., n, such that

/;= ±1,

for all n-tuples

n

(Yl'... ,Yn)E n Vi
1=1

for which z E {Yl"'" Yn}' This implies the existence of sequences {zd, lid,
{xid, {xtdcX\{z} with Zk-+Z, ik-+z, Xlk-+Xi , Xlk-+XI for k-+oo,
i = 2,..., n, such that

for all k.

Then it follows from Zk =#= Z, i k =#= z that

for all k.

Therefore the function go E G defined by

has a zero with a sign change at z and n - 1 further zeros X 2 ,... , Xn' Without
loss of generality we may assume that there are sufficiently small positive
constants ~I such that [XI - 15/, xtl c X. Then the Baar condition on X\{z f
implies the existence of a function go E G with go(x/) = sgn go(x/ - 15;).
However, choosing a sufficiently small positive constant c, it turns out that
go - ego has at least n zeros with a sign change in X which contradicts the
hypotheses on G.

Second case. Z = {z} and z E bdX. This case can be treated as the
following case.
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Third case. Z = {z " ..., zm}' m > 1. Following the proof of statement (i)
we have that zi E bd X for i = 1,..., m. Now let n distinct points X\ ,... , xn E X
be given. Without loss of generality we may assume that
{x"...,xn}nz= {Xl' ...,Xr}= {zl"",Zr}' We furthermore may assume that
for i = 1,... , r there are positive constants ~i > 0 with [Zj, ZI + ~i) eX. Then
(Zj, Zj + ~j) n Z = 0 and Zj E bd X implies that these sets are open
neighborhoods of Z I' As in the first case we must only prove that for
i = 1,..., r there are neighborhoods Uj of Zi such that

e = ± 1,

for all n-tuples (Y" ... ,Yr'xr+",,,,xn) with ylE Uj\{z;}, i= l,... ,r. We
define a function h in r variables by

Then the statement is proved if for all YI E (ZI' Zj +~;) and i = 1,... , r the
function h always assumes the same sign. Suppose that in each interval
(Zj,zl+~j) there are two points Y/> Yj,yj~Yj such that h(V\,yz,''''Yr)'

h(yl'Yz,""Yr) < O. Then h must have a zero at (f\, ...,Yr)' whereyjE [Yj'Yj]'
i=I,...,r. This means that DG(f\,...,Yr,xr+\,,,,,xn)=O. But this is not
possible because (Zj' Zj + ~;) n Z = 0 implies that W\ ,...,Yn X r+ 1 , ... , X n } n
Z = 0. This completes the proof.

It is not difficult to construct subspaces of qX) admitting pointwise­
Lipschitz-continuous selections. This can be done as follows.

EXAMPLE 1. Let G = span {g" ..., gn} be a Chebyshev subspace of qX).
Let go E qX), go ~ 0, on X with exactly one zero on X. Then the space G
defined by G:=span{go·g\,...,go·gn} satisfies the hypotheses of
Theorem 2.1.

In the case X = [a, b], a real compact interval Nurnberger [11] has shown
that the weak Chebyshev property is necessary for existence of continuous
selections. As has been defined before Lemma 2.2, an n-dimensional space G
is said to be weak Chebyshev if each g E G has at most n - 1 sign changes
or, equivalently, if for a given basis g"... , gn of G the inequality
eDG(xl''''' x n ) ~ 0, e = ± 1, holds for all points X\ < ... <X n in X. In our
general situation weak Chebyshev is no longer necessary for existence of
continuous selections. Using Example 1 we can construct spaces G which are
not Chebyshev and also not weak Chebyshev, however admit pointwise­
Lipschitz-continuous selections for PG' For n = 1 the existence of such
spaces follows from results of Lazar et al. [8].



METRIC PROJECTION ON Z-SPACES 129

EXAMPLE 2. Let X=[-1,1]U[2,3]U[4,S] and G=span{g"...,gn}'
where gl E qX) be defined by

1

I-I

gl(x): = x I _ I-x
if x E [-1, 1] U [4, 5] .. . _
I
'f [] lor 1- 1,... , n.

xE 2,3

Furthermore let go E qX) be defined by

if x E [-1, I]
if x E [2, 3] U [4, 5].

Then G is a Chebyshev subspace of qX). Using Example 1 we can show
that the space Gdefined by G:= span{ go . gp'''' go . gn} admits a pointwise­
Lipschitz-continuous selection for Pc;. But Gis not Chebyshev and also not
weak Chebyshev.

Finally we would like to ask if the complete converse to Lemma 1.1 will
be true. In the case X = [a, b] the answer is "yes," because the following
statements are equivalent as has been shown in [21]:

(i) Each non-zero g E G has at most n distinct zeros and at most
n - 1 zeros with a sign change in [a, b].

(ii) G satisfies condition (1.2) and also the Haar condition on
[a,b]\{x} for a certain xE [a,b].

Unfortunately the equivalence of these statements fails if X is an arbitrary
compact subset of the real line as we have shown in [20] by an example.
Therefore the statement of Theorem 2.1 does not yield the complete converse
to Lemma 1.1. However, we conjecture that statement (ii) of Theorem 1.5
still holds if G satisfies the conditions (1.1) and (1.2) and each non-zero
g E G has at most n distinct zeros on X. Then using Lemma 2.2 and
Theorem 1.7 we would obtain the converse to Lemma 1.1.
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